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Abstract 

Spatial skills are essential for everyday tasks, and technology blends seamlessly into 
children’s everyday environment. Since spatiality as a term is ubiquitous in experience this 
paper bridges literature in two fields: theories on early spatial learning in cognitive 
development and potential benefits of tangible user interfaces (TUIs) for supporting very 
young children’s spatial skills. Studies suggest that the period between 2 and 4 years of age is 
critical for training spatial skills (e.g., mental rotation), which relate to further success in 
STEAM (science, technology, engineering, arts, and math) disciplines. We first present a 
review of the empirical findings on spatial skills, early interventions, and tools (i.e., narrative 
and gesture input) recommended for training preschool children’s spatial skills. By situating 
the work within the use and benefits of manipulatives (e.g., building blocks, puzzles, shapes) 
combined with digital affordances in interaction design, we address the relevance of TUIs as 
complementary tools for spatial learning. We concentrate on the supporting properties of 
TUIs that enable playful learning, make storytelling more concrete, and provide embodiment 
effects through physicality. Through various products found in the market and literature that 
address the physical-digital convergence, we invite designers and researchers to consider 
design practices and applicable technology that build on present efforts and paradigms in this 
area. To contribute to this area, we conclude with a discussion of the gaps in design methods 
to develop technologies for children younger than 4 years old, and propose directions for 
future work to leverage new tools that serve very young children’s spatial learning and 
possible inquiries for dual payoff.   
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1. Introduction 

Spatial skills are of great importance for understanding the representations of relations within 
and between objects (e.g., shapes, location, paths, configurations), which are essential for 
everyday tasks. Training spatial abilities through hands-on interactions with physical objects 
(e.g., block building) before 4 years of age is found critical for effective, durable, and 
transferable learning for children [54, 92, 96]. Therefore, understanding and developing age-
appropriate tools to facilitate these skills are important. This review of literature is situated at 
the intersection of two disciplines: spatial learning as a domain in cognitive development, and 
Tangible User Interfaces (TUIs) as an interaction approach for promoting constructional 
learning processes of very young children.  
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TUIs are systems in which physical objects and environments are augmented through 
embedded computation [5, 91]. There is an increasing emphasis on investigating the 
interactional capabilities afforded by tangible technologies with reference to the area of 
preschool children’s learning [59, 66, 91]. Tangible interaction that blends the advantages of 
digital and physical worlds has a great potential for enhancing young children’s active 
learning [59, 90], and cognitive development [5], especially because it enables embodied and 
inherently spatial interaction more than other types of interfaces [5]. Although learning and 
cognitive functioning has received much interest from TUI designers amongst other major 
application domains such as problem solving, tangible programming, entertainment and 
engagement [5, 57, 59, 66, 83, 109], the use of TUIs for spatial learning as a particular 
domain in cognitive development has been less forthcoming. There is still need for 
theoretically grounded guidance that explains the means of spatial learning process to inform 
the TUI design in this regard [5]. 

Spatial skills are important for a variety of everyday tasks such as tool use (mental rotation) 
and navigation [35, 93], which are important not only in the 21st century, but throughout the 
whole of human history. Importantly, spatial skills are malleable and can be improved with 
early training activities especially between 2 and 4 years of age [54]. Hands-on experiences 
with physical objects such as blocks, puzzles, and shapes at early ages have significant 
impacts on training children’s mental rotation skills (e.g., the ability to perform rotating, 
folding, bending, scaling, cross-sectioning the two- or three- dimensional forms or shapes) 
[26, 54, 95]. Longitudinal studies in developmental studies showed that mental rotation skills 
are directly related to school readiness and further STEAM success [52, 65, 98, 99]. Hence, 
early experiences with spatial manipulatives might also provide opportunities to close the gap 
in STEAM interest and entry into STEAM-based occupations in a child’s further life [35, 93]. 
It is also informed that when given in the form of a narrative, the input provides effective 
context for teaching spatial content in block building activities [15, 26]. Moreover, 
embodiment in practice such as gesturing about rotating objects improves mental rotation 
performance of children at the age of four [70]. Then, what type of interactive technologies 
can leverage the tools that young children need along their spatial learning activities with such 
manipulatives?  

TUIs offer the physicality of interaction through graspable, embodied or distributed 
mechanisms to support children’s learning [59, 73, 105]. Moreover, integrating narrative and 
gestures are defined as typical learning domains that TUIs might enhance [59]. These tangible 
systems were basically inspired by block building activities [76, 108]. Yet, spatial problem 
solving – which relates to hands-on action, manipulation, and rotation skills – is defined as 
one of the knowledge gaps for tangible interaction research [3, 43]. Research is needed to 
better understand how TUIs can facilitate very young children’s early spatial learning.  

There is also lack of constructive design methods generated for and with children younger 
than 4 years of age in Child-Tangible Interaction (CTI) research. Until recently it was 
suggested that young children’s developmental needs could be adequately met without 
computation [5]. American Psychological Association revised their guidance, recommending 
that technology might serve for children’s development under age of 2 who are born as digital 
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natives today in the period of the 4th industrial revolution. This era is characterized by the 
blurring boundaries between physical, digital and biological worlds. Thus, understanding 
behaviors, needs, and abilities of children younger than 4 years of age as active users of 
physical and technological materials, and delivering design guidelines to develop evidence-
based, age-appropriate tangible tools appear as an important responsibility for the child-
computer interaction (CCI) community. Our research attempts to address this gap in design 
knowledge, targeting children between 2 and 4 years of age as a period that is suggested as 
critical for training spatial skills for effective learning [54]. The primary focus of our review 
lies on the following questions: 

x How can potential benefits of TUIs and training methods for spatial skills supplement 
each other to facilitate early spatial learning of children between 2 and 4 years of age? 

x How can current design methods be tailored to design for the behavioral patterns, 
abilities, and needs of children under 4 years old, and to what extent can their 
participatory contribution in design be elicited while interacting with spatial 
manipulatives? 

Regarding each research question, we first summarize the current state of theories and 
findings around child development in spatial learning and technology design in TUI. We 
present a review of empirical papers in cognitive development to compile the reliable 
measures, tools, and intervention models used in understanding children’s spatial learning 
between 2 and 4 years of age. Next, we select current paradigms in the market and design 
literature that combine the use of physical-digital tools to give an insight on how children at 
different ages and/or ability levels might benefit playing with TUIs. Last, we report the 
challenges and gaps in the literature for researchers and practitioners. This review aims to 
bridge two disciplines to further interdisciplinary practices by considering how interactive 
technology and developmental trajectories found in spatial learning could, and perhaps should 
serve each other as complementary fields to provide opportunities for children to think, play, 
and learn.   

2. Spatial Skills as a Learning Domain in Cognitive Development 
 

2.1. What are spatial skills and why are they important? 

Spatial learning and thinking in the early years are essential for a variety of everyday tasks, 
such as packing a toy box, cutting equal slices of cake for a group of people, or remembering 
where an object is by cue learning [35, 61, 92]. Newcombe and her colleagues (2013) divided 
spatial cognition into two main spheres to define the subdomains of spatial skills; navigation 
and mental rotation [65]. The former is related to interobject (extrinsic) representation and 
transformation, which involve more than one object in relation to others, and refers to being 
able to take perspective according to different frames of reference. The latter is related to 
intraobject (intrinsic) representation of individual objects and ways to transform them, which 
is also referred as the ability of tool-making. Intrinsic skills are regarded as one of the 
underlying adaptive characteristics of human species. Newcombe et al. (2013) inform that, to 
date, only intrinsic (mental rotation) encodings and transformations, not extrinsic skills, have 
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been assessed in relation to STEM [65]. Furthermore, a very recent longitudinal study by 
Lauer and Laurenco (2016) showed that mental rotation and spatial reasoning begin as young 
as 6 months of age [52]. They found that infants who spend more time looking at changed 
orientation in the displayed images (i.e., Tetris tile pieces) maintain these abilities at the age 
of 4 in terms of performing better at basic math skills [52]. Building on the previous work, 
this review focuses on mental rotation (intrinsic) skills and proposed training methods for 
preschoolers as an input to inform the design studies.  

Mental rotation, i.e. intrinsic representation of individual objects, is examined in two key 
dimensions of spatial reasoning: (1) intrinsic-static skills (e.g. recognizing, describing, 
classifying the spatial attributes of an object, and the relation of parts within an object); and 
(2) intrinsic-dynamic skills (e.g. the ability to perform rotating, folding, bending, scaling, 
cross-sectioning the two- or three- dimensional forms or shapes). The Spatial Intelligence and 
Learning Center (SILC) had been working on developing measures, tests and instruments to 
focus on preschoolers’ intrinsic spatial understanding [84]. These include measures to assess 
children’s recognition of basic 2D and 3D geometric shapes, their comprehension of spatial 
terms, or ability to employ mental folding, match the shapes, rotate puzzle pieces, and find 
identical versus mirror images. In some of these measures, sex differences were found (i.e. 
Children’s Mental Transformation Test, which requires to choose the right shape among 
multiple choices that is made of two separate pieces given in the question) [53], whereas in 
others socio-economic status differences occur (i.e. Test of Spatial Ability that requires 
copying a given target arrangement of 2D shapes or interlocking 3D blocks) [95]. The key 
aspect of spatial skills here is the fact that they are malleable so that both girls and boys with 
any kind of individual differences can improve these skills with training [92]. Then, how is it 
possible to train these skills? 

2.2. How to improve intrinsic spatial skills (mental rotation)? 

Early spatial experiences through materials such as block building activities, shape games, 
and playing with puzzles help children to develop spatial skills [96]. Children who play with 
more puzzles between 2 and 4 years of age have better spatial transformation abilities than 
their peers when they are 4.5-years-old [54]. Guided-play is considered as a scaffolding 
technique to promote more sustained learning with well-planned materials [27], and 
employing various spatial tools such as narratives and gestures improves the effectiveness of 
spatial instruction [22].  

 2.2.1. Guided-play as a technical tool 

When delivering a content to young children, instead of direct instruction and free play, 
implementation of guided-play is found to be an effective learning tool, enabling child-
centered exploration as well as encouraging children to become active and engaged partners 
in their learning process [100]. Guided play is described by Golbeck (2001) as an intermediate 
approach between didactic instruction and free play [27, 32]. In line with this, Ferrara et al. 
(2011) observed that guided play encourages parents to use more spatial language during play 
sessions and enable both children and parents to focus on solving specific problems related to 
spatial thinking [26]. Shape knowledge of 4- to 5-year-old children, as a key aspect of school 



 

  5

readiness, is also significantly improved through guided-play when compared to free play and 
direct instruction [26].  

2.2.2. Narrative input as a scaffolding tool  

Language, in the form of a well-organized narration, is suggested as a powerful tool for word-
to-object mapping [15]. It also helps to increase engagement in learning spatial concepts [64]. 
Smith (2009) pointed to a correlation between language and early visual object recognition 
and noted that 18 and 24 months of age is a critical period in terms of learning object names 
and developing object recognition. The relationships among the emergence of whole-object 
representation of a shape, object name learning, and goal-directed action need to be further 
investigated [85]. In another experimental study Casey et al. (2008) showed that incorporating 
a story-telling context within a block building activity has a positive impact on spatial 
visualization and mental rotation skills in kindergartners [16]. Therefore, ways for enriching 
the content of a story in a block building activity with spatial terms and concepts to further 
improve young children’s learning are to be realized. 

The Spatial Language Coding Manual [13] developed in University of Chicago (SILC) is a 
useful guide to analyze the content of spatial language produced by parents during play 
sessions. Three categories of spatial language are coded [54]: 1) dimensions, features and 
shapes of objects (e.g., big, small, square, triangle, curvy, straight); 2) orientation and 
transformation (e.g. turn it around, upside-down, flip); 3) location and direction (e.g. on, 
under, next to, here, there). Here, the categorization of language input presented in the manual 
provides an insight about what type of spatial information is required by young children in a 
narrative during a block building activity. Thus, this coding manual might also inform a 
guideline for a further narrative-based TUI design aiming to facilitate spatial learning. 

 2.2.3. Gesture input as a scaffolding tool 

Gesture is another powerful tool for spatial learning, which is itself inherently spatial. It 
conveys meaning that is offered in the language, and highlights components of an action that 
promote thinking and learning of abstract ideas [34]. For instance, children at the age of 3 
whose parents used more gestures when using spatial words such as dimensional adjectives 
(e.g. big, little, tall, short), shape terms (e.g., circle, square), and spatial features (e.g., straight, 
curved, bent, flat) had more spatial language than their peers whose parents gestured less [14]. 
Gesture (e.g., pointing) also encourages children as young as 14 months to engage or 
participate actively in a dialogue and to capture patterns of relationships or categories in 
guided activities such as joint book reading. Being involved in this interactional behavior also 
reinforces children’s later vocabulary development [78]. In a mental transformation task, 4- 
and 5-year-old children who gestured more performed better in fitting two shapes together 
than their peers who did not gesture [22]. Furthermore, providing co-speech gestures along 
with spatial language is particularly effective in improving the ability to put puzzles together 
at the ages of 4 and 5 [104].  

In most research, gestures of parents and children during play activities are coded separately 
[14, 78]. Parents’ gestures are coded according to their purpose: pointing to a shape in a figure 
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or showing a rotation to help the child to engage in the process, and solve spatial problems. 
Moser et al. (2015) coded 2.5-3–year-old children’s gestures in puzzle play activities (i.e., 3D 
geometric pieces on magnetic board, and 2D representations of geometric pieces on 
touchscreen), beginning when a piece was touched and ending when the touch ended: action 
fidelity, strategy switch, and goal efficiency (that the pieces are connected within the 2-mm 
threshold) [63]. We argue that the types, characteristics, and patterns of parent and child 
gestures in previous research can inform the design of TUIs for spatial learning.  

Based on these findings in the literature, we conclude that the spatial information embedded 
in narratives and gestures can foster mental rotation skills of preschoolers while playing with 
manipulatives. Guided-play, in turn, can scaffold learning. The following sections will discuss 
the possible benefits of TUIs in learning and how they can be further improved by the use of 
narrative, gestures, and guided-play principles.   

3. TUIs for Learning as an Application Domain in Child-Computer Interaction 
 
3.1. What are TUIs and why can (and should) they facilitate early spatial learning? 

As described in the previous sections, technology became an integral part of children’s 
everyday life and digital technologies disappear or blend seamlessly into everyday objects of 
children such as smart boards at schools. Children as young as 2 years old are using touch-
based devices to interact with digital media [4, 38]. Ishii (2008) compared the importance of 
couplings between physical and digital worlds to the conjunction of sea of bits and land of 
atoms where the myriad of unique forms has blossomed [47]. This seashore is also regarded 
as a promising environment that allows children to physically interact, play, think, and learn 
about the world they are born into. An overview by Learning Science Research Institute 
highlighted that these computationally enhanced tangible interfaces may provide great 
opportunity especially for younger children because they allow playing with actual physical 
objects and these tangibles might range from being completely analogous, in the form of 
physical representations, to being completely digital [66]. Learning is seen as one of the major 
application domains of TUIs since they offer hands-on activities or manipulation of physical 
objects through a range of possible combinations between physical and digital representations 
[5, 59, 66, 83].  

Marshall (2007) described a number of learning domains such as molecular biology 
education, programming, narrative, and dynamic systems in his analytic framework on 
tangibles for learning [59]. He claimed that the commonality between types of tangible 
interface design is that they are inherently spatial; either physically in their use of concrete 
manipulation, or metaphorically in their representational systems to map the interaction 
operations (e.g., lights, sounds or graphs in Zuckerman et al. [107, 108]). Ishii and Ullmer 
(1997) described TUIs in three classes: (1) Interactive Surfaces (an active interface between 
physical and virtual worlds), (2) Coupling of Bits and Atoms (seamless coupling of graspable 
everyday objects), and (3) Ambient Media (use of sound, light, airflow, and water movement 
for background interfaces) [46]. As a further step Van den Hoven et al. (2013) categorized the 
levels of physical-digital integration into three groups: (1) Discrete (a physical input and 
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digital output are positioned vertically on a surface), (2) Collocated (physical input and digital 
output are positioned and displayed on a surface), (3) Embedded (the system is embedded 
within a physical object) [94]. The selection of examples presented in section 3.2 is based on 
these sets of categorizations of TUIs for learning.  

The range of possible combinations of novel links between physical action and digital 
representations can be one of the primary learning benefits of tangible interfaces for young 
children [5, 59, 66]. As also highlighted in spatial cognition literature, tangible interaction is 
based on physical actions with tangible physical objects that provide spatial properties (i.e., 
location, orientation, and configuration), and physical attributes (i.e., visual, tactile, and 
audio) [5, 56, 63]. Physical action such as gesturing helps young learners to extract 
information and learn concepts from hand movements [33] as well as demonstrating their own 
knowledge. The core idea of Papert’s Logo turtle approach - developed in the mid-1960s is, 
children learn geometric shapes easier if they use their own bodies (e.g., walking a square) 
[60, 67, 75]. He conceived these computationally enhanced tangibles like the robot turtle as 
objects-to-think-with, in which artifacts and understanding of concepts co-evolve and help 
with knowledge construction in the learning process [12, 21, 48, 68, 75].  

Following Papert’s approach, several tangible systems have been developed for children as 
manipulatives. Thus, the relevance of TUIs for children’s spatial learning was realized long 
before the emergence of the term TUI [105]. The following section mainly focuses on TUI 
examples that combine spatial manipulatives such as wooden blocks, plastic bricks, tangram 
pieces with interactive surfaces and stimulate children’s spatial skills.  

       3.2. How TUIs can facilitate early spatial learning 

The embodiment effects of physical activity, haptic interactions with grasping and 
manipulating real physical objects, and the embedded computational power within physical 
manipulatives that the tangible technologies employ can have benefits on learning [59, 66]. 
Some findings favor TUIs over graphical user interfaces (GUIs) with regard to children’s 
engagement [6] and performance [102] in block building and puzzle play activities. However, 
the advantage of digital materials over physical materials in the context of learning is still 
controversial, and needs additional empirical validation [4, 109].  

Research suggests various advantages of traditional materials over digital materials in young 
children’s learning process such as prompting higher parent-child engagement [69], more 
language production in spontaneous speech [106] along with physical, sensory and 
metaphoric qualities of material interaction enhancing playfulness [55, 97]. Playing with 
traditional toys prompted more parental language both in quantity and quality than electronic 
toys designed to teach geometric shapes to children [106].  

On the other hand, the unique capabilities of digital materials (e.g., data storage and retrieval, 
transportation, interactivity) allow for customized cues, prompts, and reinforcements. These 
functionalities, tailored to the individual have transformed the realm of education by 
scaffolding guided instructions and independent learning [30]. The combination of various 
features within the same platform (e.g., animation, game, narrative, audio or visual feedback) 
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stimulates sensory and cognitive skills, while the challenges and feedback provided in the 
narrative flow enable not only active, but also minds-on engagement [40, 41]. The most 
commonly referred advantage of digital tools over traditional materials are their ability to 
provide individual experience for children [81, 96, 103, 109]. Through real-time feedback, 
digital tools and TUIs in particular, provide the opportunity to iterate action with reflection-
on-action to enhance leaning [40]. So far, the advantage of TUIs compared to other materials 
is implied in the function and representation of physical objects in an application, so that the 
conventional toys can be used as controllers of interactive games [57]. However, more 
empirical research is needed to investigate the impact of TUIs on learning, especially 
compared to the use of non-digital physical materials. 

Given that both physical interaction with traditional materials and digitally enhanced 
interactive tools carry advantages and challenges for preschoolers, then what would be the 
benefits of TUIs which synthesize both platforms to favor spatial skills in particular? As 
discussed in the previous section, children benefit more from playing with spatial 
manipulatives if they are guided by a narrative and gesture during block building activities 
[15, 22, 104]. There are different narrative and gesture-based examples of TUIs. Thus, the 
following subsections will present the examples of TUIs to understand how narrative and 
gesture input might be augmented in TUI design to scaffold young children’s spatial 
reasoning.   

3.2.1. Narrative-based TUIs for learning  

A story-telling context as a narrative device has a positive impact on preschoolers’ spatial 
visualization, construction, and rotation skills when incorporated into block building activities 
[15]. Storytelling is also a typical learning domain that TUIs might enhance because the 
structure of narrative includes a sequence of events [59] and helps children to organize the 
information they receive. By representing the temporal sequence of events in a narrative in a 
spatial format [59], much of the activities in TUIs for learning involves interactive storytelling 
[44, 66]. Preschool children often engage in tangible storytelling by using physical artefacts in 
their immediate environment to create their own stories. Some projects in TUI have taken 
advantage of this physical aspect of storytelling [44]. For example, Holmquist and colleagues 
(2000) invented a design for interactive storytelling that allowed users to experience different 
parts of a story by manipulating physical objects. As such, the boundary between story and 
interface was blurred [42].  

TUI projects based on storytelling include various aspects such as tangible characters (e.g., 
KidStory [87], TellTale [2]), room-sized ambient storytelling environments (e.g., Storyrooms 
[1], Pogo World [77]), interactive surfaces (e.g., StoryMat [79], KidPad [44], LinguaBytes 
[39]), tangible word blocks (e.g., RoyoBlocks [50]), audio-video or motion recorders (e.g., 
Tangicam [51], I/O Brush [80], Jabberstamp [72]), and storytelling robots (e.g., PETS [20]). 
However, as Tanenbaum et al. (2010) emphasized tangible storytelling technology often 
focuses on mapping tangible objects for system outcome rather than focusing on the narrative 
meaning of the objects itself [89]. Hereby, Make a Riddle by Sifteo Inc. [45] is an efficient 
example for the use of a physical object as an embedded TUI. It is a hybrid tangible-graphical 
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interface that teaches children spatial language (i.e., prepositions) in rhymes through 
manipulating Sifteo Cubes. In turn, it provides responsive narrative feedback to related 
motions. When delivering spatial concepts in the form of a narrative, physical objects might 
help young children connect with the content more readily. Thus, investigating how 
manipulatives can be enhanced digitally to understand a spatial content easier might 
illuminate the tangible interaction research and user studies on young children.  

3.2.2. Gesture-based TUIs for learning  

Gesture-based examples of TUIs are accounted to support children’s learning and reasoning 
[5]. Spatial problem solving, which involves hands-on action, manipulation and mental 
rotation skills, is addressed as one of the important knowledge gaps in tangible interaction 
research [4, 43]. There are a few gesture-based tangible prototypes that relate to spatial skills. 
TICLE [82] for instance is an archetype that combines physical tangram puzzle play with an 
interactive tabletop. Curlybot [29], a programmable curved object, and Topobo [71], a 
construction kit with modular block building system, are two examples of TUIs that capture 
physical motion and create a playful robot experience for children. However, to date, 
knowledge about how and to what extent children’s spatial learning benefits from these TUIs 
is lacking.  

The use of manipulatives (physical objects) in teaching and learning, especially during the 
preschool period has a long history [31, 62]. Fröbel and Montessori introduced manipulatives 
as physical modeling of abstract structures related to spatial reasoning designed to foster 
preschoolers’ learning. Resnick and colleagues (1998) translated Fröbel’s and Papert’s 
approaches into Digital Manipulatives that enable children to explore mathematical and 
scientific concepts (e.g., numbers and shapes) through direct manipulation of computationally 
enhanced physical objects (e.g., blocks, balls, beads, badges) [76]. Fröbel Gifts and 
Montessori materials furthermore inspired the development of well-known products for 
children that dominate the market (e.g., wooden blocks, plastic bricks, Lego Mindstorms®, 
Tinkertoy®, Zome®, Base Ten Blocks®, Cuisenaire Rods®, Fraction Tiles®, Wikki Stix®) 
[108]. Zuckerman and his colleagues, in turn, extended the work of Fröbel and Montessori by 
developing an interface design with computationally enhanced building blocks [76, 108]. 
Their work introduced a new classification by situating the use of such manipulatives to 
encourage hands-on modeling of abstract structures for children above 7 years old [108]. This 
approach can serve as a basis for further interpretations tailored to the needs and abilities of 
preschoolers’ physical actions and behaviors in play activities with spatial manipulatives.  

3.2.3. Manipulatives that might be used in further TUI design for spatial learning  

A recent study argued that both canonical and non-canonical shape materials on the market 
today are inadequate in providing variety for preschoolers in terms of inviting comparison and 
contrast of different versions of shapes from different categories [74]. Similarly, Verdine et al. 
(2014) state that most of the research that employed spatial materials in investigating the 
mental rotation skills of preschoolers is based on building blocks and jigsaw puzzles. 
However, the use of other types of manipulatives for this age range is yet to be investigated 
[96]. In addition, TUIs inspired by analogue building blocks (e.g., Algo Blocks [88], Lego 
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concentrate on a task easily [56]. An initial effort by Farber et al., (2002) was to modify 
Druin’s influential Cooperative Inquiry [19] for including children between 4-6 years old 
[25]. Later, with a similar attempt Guha and her colleagues’ developed Mixing Ideas 
technique conducted with children as young as 3 years old [36]. The lessons learned through 
these studies showed that young children need more structured design sessions to cooperate, 
rather work one-on-one in a team, and can employ drawing and cutting-pasting activities to 
communicate their thoughts [36].  

Marco and his colleagues (2013) emphasized that young children are active users of 
technology and thus entitled to be involved in user-centered design projects [57]. They 
recruited children between 3 and 6 years of age to the design of a collocated TUI system 
design. They reported how they used Wizard of Oz method to observe elicited gestures and 
Peer Tutoring for guiding narrative expressions required by child users. They concluded that 
the physical nature of tangible technologies fits this very young user profile to retrieve 
information from their user actions when playing with toys [57]. These studies showed that 
observational method involving children under 4 years old as users has been the most 
convenient child-centered design method so far for working with this challenging age group.  

What Fröbel and Papert had in common was that they both began with observing children to 
understand the nature of the learning process, and helped children in the heuristics of playing 
with manipulatives as objects-to-think-with. Today, researchers both in TUI and 
developmental studies trace the observational path to understand actions, manipulations, and 
rotation strategies elicited from even younger children’s interaction with physical objects. 
Hereby we argue that, spatial manipulatives not only allow learners to practice mental rotation 
actions but also enable producing different figures to be integrated in narratives and tasks. 
Therefore, they can also serve well as low-tech, child-friendly supplies for prototyping to 
design high tech applications. Since designers or researchers might have difficulty in 
communicating with children between 2 and 4 years old, such story-based tasks designed with 
manipulatives [7] might be helpful for involving children in interactional behavior, actively 
engaging them in a dialogue, and more effectively including them in the design process. The 
outputs of the experimental designs produced with these manipulatives will also contribute to 
the current state of the field by providing information about young children’s experiences in 
user studies. Understanding how these facilitating mechanisms of spatial learning work in 
young children’s experiences with different types of manipulatives would inform research on 
exploring and designing necessary components for playful environments.  

Based on the reviewed literature, we can conclude that observing young children’s 
interactions with spatial manipulatives in goal-directed mental rotation tasks in the form of 
guided-play might be helpful for modifying current methods found in design research, as well 
as informing narrative and gesture-based tangible systems. Also, methods used to code 
gestures and narratives used in cognitive developmental studies might also be helpful for 
providing empirical definitions and analysis elicited from these observational methods. We 
hope this paper contributes to child-centered user research methods and design studies by 
presenting information about user needs of children between 2 and 4 years of age, and invite 
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research that explores ways to facilitate spatial learning related to STEAM skills such as 
mental rotation.  

5. Conclusion 

Bridging between two disciplines, a series of potential opportunities appear both for early 
spatial learning theories and TUIs, which in turn might facilitate young children’s spatial 
skills.  First, integrating and implementing the reliable intervention techniques and tools 
suggested in research on spatial learning might also yield an understanding of young 
children’s spatial learning into physical-digital interaction. Second, developing reliable 
methods in child-centered design practices involving children younger than 4-year-olds might 
fill an important gap while providing evaluation constructs and measures. Third, bringing out 
formative evaluations and prescriptive guidance based on observational research that can be 
used to inform the design through case studies would ensure empirically validated design 
choices. Fourth, observing children’s physical-digital interactions with spatial manipulatives 
would provide in-depth insights into their learning patterns as well as their user behaviors and 
thinking strategies. Finally, generating empirical support to elaborate the proposed claims and 
expanding the opportunities for preschool children’s spatial experiences would also open new 
horizons in future research on the learning benefits of TUIs.  

TUIs are constructive, relational and associative systems that bring physical and digital 
affordances together. TUI learning environments may therefore be helpful in the context of 
spatial learning. Thus, our aim is to emphasize the importance of producing knowledge and 
evidence-based tools to facilitate young children’s spatial skills, and highlight some of the 
opportunities for further studies in both areas. As more research is conducted in both areas, 
more explorations will elicit specificity in theoretically grounded TUI design that is 
supportive of spatial learning.  
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